Kenan kılıçaslan

  • Friction Loss
  • Equation Solve
Calculations Calculations

1st Order Differential Equation Solution

Solution of first-order differential equations in the form of $\displaystyle {\frac{dy}{dx}}=f(x,y)$ or $\displaystyle {y'}=f(x,y)$ is made. Use the $x$ and $y$ variables. You can use the +, -, *, / math operators and the following functions. Use the pow function to take the exponent. For example, type pow (x, 2) for $x^2$.

The differential equation you want to solve:
$\displaystyle {\frac{dy}{dx}}=f(x,y)=$
Formula:
Necessary boundary conditions for solution:
$x_0=$
$y_0=$
The desired $x$ value to be found:
$x_1=$
Increment $\Delta x=$
Functions to be used in the equation:
$\begin{array}{rllr} \textbf{pow(x,a)} & : & x^a \\\textbf{sin(x)} & : & sin\, x &\textbf{cos(x)} & : & cos\,x \\\textbf{tan(x)} & : & tan\,x &\textbf{log(x)} & : & ln\,x \\\textbf{exp(x)} & : & e^x &\textbf{abs(x)} & : & \left|x\right| \\\textbf{asin(x)} & : & arcsin\,x &\textbf{acos(x)} & : & arccos\,x \\\textbf{atan(x)} & : & arctan\,x &\textbf{sqrt(x)} & : & \sqrt{x} \\\textbf{pi} & : & \pi &\textbf{esay} & : & e \textrm{ number} \\\textbf{LN2} & : & ln\,2 & \textbf{LN10} & : & ln\,10 \\\textbf{Log2e} & : & log_{2}\,e & \textbf{Log10e} & : & log_{10}\,e \end{array}$
beyaz_sayfa_en_alt_oval

Documents    Products    Calculator    Unit Conversion    Reference    Contact

Pipe Calculations    Air Ducts    Equation Solver   

Kenan KILIÇASLAN 2012© Copyright.       Designed by Nuit