Kenan kılıçaslan

  • Friction Loss
  • Equation Solve
Calculations Calculations

Higher Order Differential Equation Solution

The solution of high order differential equations in the form of $\displaystyle {\frac{d^{n}y}{dt^{n}}}=f(t,y^{(n-1)},y^{(n-2)}, \dots, y',y)$ is made by numerical analysis method. Use the variables $t$, $y'''$, $y''$, $y'$ and $y$. You can use the +, -, *, / math operators and the following functions. Use the pow function to take the exponent. For example, for $t^ 2$, type pow (t, 2). (Currently, up to the 4th order is calculated.)

The differential equation you want to solve:
Order
Formula:
Variables
$\displaystyle {\frac{d^2y}{dt^2}}=f(t,y,y')=$
Necessary boundary conditions for solution:
$\displaystyle t_{0}=$
$\displaystyle y_{0}=$
$\displaystyle y'_{0}=$
The desired $t$ value
$t_n=$
Increment $\Delta t=$
Functions to be used in equations:
$\begin{matrix} \textbf{pow(x,a)} & : & x^a \\\textbf{sin(x)} & : & sin\, x &\textbf{cos(x)} & : & cos\,x \\\textbf{tan(x)} & : & tan\,x &\textbf{log(x)} & : & ln\,x \\\textbf{exp(x)} & : & e^x &\textbf{abs(x)} & : & \left|x\right| \\\textbf{asin(x)} & : & arcsin\,x &\textbf{acos(x)} & : & arccos\,x \\\textbf{atan(x)} & : & arctan\,x &\textbf{sqrt(x)} & : & \sqrt{x} \\\textbf{pi} & : & \pi &\textbf{esay} & : & e \textrm{ sayısı} \\\textbf{LN2} & : & ln\,2 & \textbf{LN10} & : & ln\,10 \\\textbf{Log2e} & : & log_{2}\,e & \textbf{Log10e} & : & log_{10}\,e \end{matrix}$
beyaz_sayfa_en_alt_oval

Documents    Products    Calculator    Unit Conversion    Reference    Contact

Pipe Calculations    Air Ducts    Equation Solver   

Kenan KILIÇASLAN 2012© Copyright.       Designed by Nuit